

SCHWINGUNGSTECHNIK

1/2

Werkstoff gemischtzelliges flammwidriges PUR-Elastomer

(Polyurethan)

Farbe braun meliert

Standard-Lieferform

Dicke: 25 mm / 50 mm
Platte: 0,5 m breit, 1,5 m lang

Streifen: bis 1,5 m lang

Andere Abmessungen und selbstklebende Ausrüstung auf Anfrage.

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen produkt- und anwendungsspezifischen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Die Werkstoffeigenschaften und deren Toleranzen variieren je nach Art der Anwendung und Beanspruchung und sind auf Anfrage erhältlich.

Änderungen vorbehalten. 2022-05

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Statischer Einsatzbereich ² (statische Lasten)	bis 0,11 N/mm²		
Dynamischer Einsatzbereich ² (statische und dynamische Lasten)	bis 0,16 N/mm²		
Lastspitzen ² (seltene, kurzzeitige Lasten)	bis 3,0 N/mm²		ca. 60% Verformung
Mechanischer Verlustfaktor	η = 0,25	DIN 535131	temperatur-, frequenz,- pressungs- und amplitudenabhängig
Druckverformungsrest	< 5 %	EN ISO 1856 ¹	50% Verformung, 70°C, 22h, 30min nach Entlastung
Min. Bruchspannung Zugversuch	0,48 N/mm²	EN ISO 527-3/5/100	
Min. Bruchdehnung Zugversuch	110 %	EN ISO 527-3/5/100	
Einsatztemperatur	-30°C bis 70°C		kurzzeitig höhere Temperaturen möglich
Brandverhalten	S4/SR2/ST2	DIN 54837	Beurteilung nach DIN 5510-2
	HL3 HL3 E	DIN EN 45545-2 DIN EN 45545-2 DIN EN ISO 11925-2	Anforderungen für R10 Anforderungen für R22 Klassifizierung konform DIN EN 13501-1

¹ Messung / Auswertung in Anlehnung an die jeweilige Norm

Federkennlinie

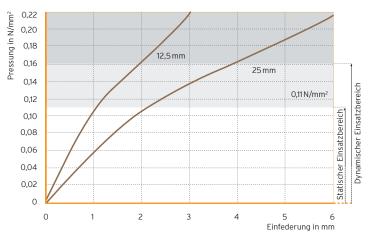


Abb. 1: Quasistatische Federkennlinie für verschiedene Lagerdicken

Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,011 N/mm²/s.

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung mit linearisiertem Startbereich nach ISO 844, Prüfung bei Raumtemperatur.

Formfaktor: q = 3

² Werte gelten für Formfaktor q = 3

SCHWINGUNGSTECHNIK

2/2

Elastizitätsmodul

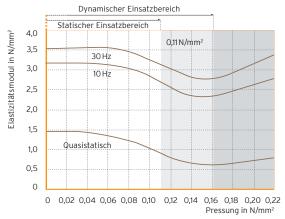


Abb. 2: Belastungsabhängigkeit des statischen und dynamischen Elastizitätsmoduls

Quasistatischer Elastizitätsmodul als Tangentenmodul aus der Federkennlinie. Dynamischer Elastizitätsmodul aus sinusförmiger Anregung mit einer Schwingschnelle von $100\,\mathrm{dBv}$ re. $5\cdot10^{-8}\,\mathrm{m/s}$ (entsprechend einer Schwingweite von 0,22 mm bei $10\,\mathrm{Hz}$ und 0,08 mm bei $30\,\mathrm{Hz}$).

Messung in Anlehnung an DIN 53513

Formfaktor q = 3

Eigenfrequenzen

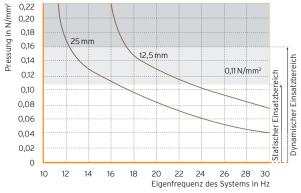


Abb. 3: Eigenfrequenzen für verschiedene Lagerdicken

Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer® FR 3110 auf starrem Untergrund.

Parameter: Dicke des Elastomerlagers

Formfaktor q = 3

Statisches Dauerstandverhalten

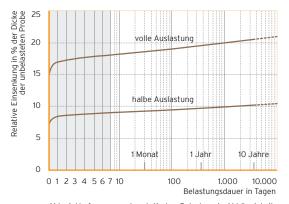


Abb. 4: Verformung unter statischer Belastung in Abhängigkeit der Zeit

Verformungszunahme unter gleichbleibender Druckbelastung.

Parameter: ständige Pressung

Formfaktor q=3